a2 United States Patent

Boucard et al.

US009471538B2

US 9,471,538 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(1)

(52)

(58)

NETWORK ON A CHIP SOCKET
PROTOCOL

Applicant: QUALCOMM TECHNOLOGIES,
INC., San Diego, CA (US)

Philippe Boucard, Le Chesnay (FR);
Jean-Jacques Lecler, Cupertino, CA
(US); Boris Boutillier, Montigny le
Bretonneux (FR)

Inventors:

Assignee: Qualcomm Technologies, Inc., San

Diego, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 602 days.
Appl. No.: 13/626,758
Filed: Sep. 25, 2012
Prior Publication Data
US 2014/0086246 Al Mar. 27, 2014
Int. C1.
GO6F 15/78 (2006.01)
GO6F 13/364 (2006.01)
(Continued)
U.S. CL
CPC ... GO6F 15/7825 (2013.01); GOGF 11/0745

(2013.01); GO6F 13/4059 (2013.01); GO6F
13/364 (2013.01)

Field of Classification Search
CPC HO04B 2203/5445; HO04B 3/54; HO04B 3/542;
HO4L 12/5601; HO4L 12/5693; HO4L 29/06;
HO4L 29/0653; HO4L 29/0809; HO4L
29/1232; HO4L 29/06027; HO4L 29/06068;
HO4L 29/06095;, HO04L 29/08072; HO4L
29/08117; HO04L 29/12009;, HO4L 45/00;
HO4L 47/10, HO4L 47/30;, HO4L 47/32;
HO4L 47/2441; HO4L 49/30, HO04L 49/90,
HO4L 49/254; HO4L 49/351; HO4L 49/3009;
HO4L 61/2092; GO6F 12/109; GOG6F 12/1009;
GO6F 12/10;, GOG6F 13/385; GO6F 13/387,
GO6F 13/409; GOGF 13/4022; GO6F 13/4027,
GO6F 13/4072; GOG6F 13/4086;,; H04W 8/26

USPC 370/235, 389, 392, 419, 423, 463, 475,
709/230, 232; 710/100, 305; 711/206

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,671,275 B1* 12/2003 Wong HO4L 12/5693

370/389

6,826,191 Bl 112004 Jones et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP
WO

2333830 Al
2007033238 A2

6/2011
3/2007

OTHER PUBLICATIONS

Bononi L., et al., “NoC Topologies Exploration based on Mapping
and Simulation Models,” Digital System Design Architectures,
Methods and Tools, 10th Euromicro Conference on, Aug. 29-31,
2007, pp. 543-550.

(Continued)

Primary Examiner — John Pezzlo

Assistant Examiner — Dharmesh Patel

(74) Attorney, Agent, or Firm — Muncy, Geissler, Olds &
Lowe, P.C.

(57) ABSTRACT

The invention is a transaction interface protocol wherein the
interface protocol has a transaction identifier signal in each
of the request and response channels. It is used between a
target network interface unit (NIU) master and an initiator
NIU slave that are directly connected through a transaction
interface. The target NIU response channel uses the trans-
action ID signal to identify the entry in a context array
associated with the corresponding request. The coupling of
target NIU and initiator NIU enable the formation of an
on-chip interconnect comprising multiple network-on-chip
(NoCs) wherein the topology of the interconnect is simpler,
smaller, faster, and has lower latency.

19 Claims, 10 Drawing Sheets

100
110 112 120 132 130
\ \ _L /
122 124
— ] T
150
/
)_
126"‘:_’_; I;
142 14
160 146
)_

140

152



US 9,471,538 B2
Page 2

(51) Imt.CL
GO6F 11/07 (2006.01)
GO6F 13/40 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

6,944,039 Bl *
8,027,256 B1*

9/2005 Nataraj et al. ............. 365/49.17
9/2011 Subramanian et al. ...... 370/231

8,087,064 B1* 12/2011 Baum ............... . 72613
8,677,045 B2* 3/2014 Mangano et al. . 710/310
8,713,234 B2* 4/2014 Lakshmanamurthy
etal. oo 710/113
2003/0081624 Al* 5/2003 Aggarwal et al. ............ 370/412
2004/0017820 Al 1/2004 Garinger et al.
2004/0019733 Al 1/2004 Garinger et al.
2005/0138252 Al 6/2005 Gwilt
2006/0021022 Al 1/2006 Krishna et al.
2006/0095920 Al 5/2006 Goossens
2007/0245033 Al* 10/2007 Gavrilescu et al. .......... 709/230
2008/0317249 Al* 12/2008 Bates et al. ........c.c........ 380/255
2010/0169896 Al 7/2010 Bennebroek et al.
2010/0191890 Al* 7/2010 Hum et al. ...... 710/305
2011/0035523 Al1* 2/2011 Feero et al. ... ... 710/110
2011/0289253 Al* 11/2011 Mangano et al. ............ 710/310
2011/0302345 Al1* 12/2011 Boucard ................. HO04L 47/10
710/123

OTHER PUBLICATIONS

International Search Report and Written Opinion—PCT/US2013/
061295—ISAEPO—IJan. 10, 2014.

Radulescu A, et al., “An Efficient On-Chip NT Offering Guaranteed
Services, Shared-Memory Abstraction, and Flexible Network Con-
figuration’,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Jan. 2005, vol. 24, No. 1, pp. 4-17,
ISSN 0278-0070.

Daneshtalab M., et al.,, “A Low-Latency and Memory-Efficient
On-chip Network,” Networks-On-Chip (NOCS), 2010 Fourth
ACM/IEEE International Symposium on, IEEE, Piscataway, NJ,
USA, May 3, 2010 (May 3, 2010), pp. 99-106, XP031707260,
ISBN: 978-1-4244-7085-3.

Kwon W-C., et al.,“In-network Reorder Buffer to Improve Overall
NoC Performance while Resolving the in-order Requirement Prob-
lem,” Design, Automation & Test in Furope Conference & Exhi-
bition, 2009, Date *09, IEEE, Piscataway, NJ, USA, Apr. 20, 2009
(Apr. 20, 2009), pp. 1058-1063, XP032317643, DOI: 10.1109/
DATE.2009.5090821 ISBN: 978-1-4244-3781-8.

Seifi M.R., et al., “A Clustered NOC in Group Communication,”
TENCON 2008-2008, TENCON 2008, IEEE Region 10 Confer-
ence, IEEE, Piscataway, NJ, USA, Nov. 19, 2008 (Nov. 19, 2008),
pp. 1-5, XP031414565, ISBN: 978-1-4244-2408-5.
Supplementary European Search Report—FEP13842232—Search
Authority—The Hague—Jul. 12, 2016.

Yang X., et al., “NISAR: An AXI Compliant On-chip NI Architec-
ture Offering Transaction Reordering Processing,” Oct. 25, 2007
(Oct. 25, 2007), XP002759391, Retrieved from the Internet:
URL:http://ieeexplore.ieee.org/stamp/stamp.sp?tp=&arnumber=
4415774 [retrieved on Jun. 30, 2016].

* cited by examiner



U.S. Patent Oct. 18, 2016 Sheet 1 of 10 US 9,471,538 B2

(@] (9\]
8 5] e
— = N |~
— =~
T g
AL
R
L~ \%_) <~
AL .
(@]
8 - O
A L
[aV}
h

120
\

122

112

110
\




U.S. Patent

Oct. 18, 2016 Sheet 2 of 10 US 9,471,538 B2

200

A

Request Opcode

Request Address

Request Data

Request Length

\/ Request SeqlD

Response SeqlD

A

Response Data

A

FIG. 2

210




US 9,471,538 B2

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 3 of 10
© A (¢e)
(@] (@]
(a2 =~ o ~
<
- ™
w
A
(@]
(4]
(4]
vy
a8 < > M o
0~
[a\| (o]
— (o]
(4] [ap]
()]
™S O
™
A
S A S A
o o A 4




U.S. Patent Oct. 18, 2016 Sheet 4 of 10 US 9,471,538 B2

«© A 8
Q
(e
2 <
L N
| o
L
§ < > > x
™~
'{ A 8‘
N <
.

402
\
404
P



U.S. Patent Oct. 18, 2016 Sheet 5 of 10 US 9,471,538 B2

500

A Request Opcode @~—m>>

Request Address —m

Request Data —_—

Request Length —_—

/ Request SeqlD —_—

\/ Request TrID —_—

510

A

Response Data

A

Response TrID

FIG. 5



U.S. Patent Oct. 18, 2016 Sheet 6 of 10

US 9,471,538 B2

FIG. 6

8 V. N 8
© =~ © =
<
-—
|~ ©
wn
A
3
|l Ll (el | ©
Y {
S < |- & I I N N » fd
© ~
/1 J
N o
~— N
[<e] (o]
(@]
™~ O
—
[<o]
A
N
O -7 g./
(o] [{e) A 4




U.S. Patent Oct. 18, 2016 Sheet 7 of 10 US 9,471,538 B2

706
708

FIG. 7

700

710

702
\
704

Y



U.S. Patent Oct. 18, 2016 Sheet 8 of 10 US 9,471,538 B2

O 4 A %_) g %_l
(]
o~] L-® ©o~] L-®
A 4 o
&
[of sl (=] A
OO0 |+ A 4 "
0
L L > (D
T~o —_
l s LL
S < >
0 ~
} (n'd
'{ A a
[aV] (e 0]
—
o0
<
(&} QO
O o0
(o] A 4




US 9,471,538 B2

Sheet 9 of 10

Oct. 18, 2016

U.S. Patent

6 Ol
.6 796 €6 26
\ \ \ \
> > 1 > 1 > >
@m@/ mmw 066
\\\ /\/\«m‘ /Hy\l‘\ [~ <
3 awi 3
3 awl 3
3 aul 3
3 aul 3
X N x 2 N X 7\ N\ N\
N é 7 086 e
~ L6 vwmv _ >Nl e wa PN BN -7 443
“ < vV o< v <
\ \ \ \
0.6 096 0€6 026
\
056 016



U.S. Patent Oct. 18, 2016 Sheet 10 of 10 US 9,471,538 B2

allocate context array entry

issue transaction request

accept transaction response

look up context array entry

FIG. 10



US 9,471,538 B2

1
NETWORK ON A CHIP SOCKET
PROTOCOL

TECHNICAL FIELD

This disclosure is related generally to the field of semi-
conductor technology and more specifically to network-on-
chip interconnects for systems on chip.

BACKGROUND

A network-on-chip (NoC) is a packet based interconnec-
tion for transporting read and write transactions between
socket interfaces. A NoC comprises at least one initiator
network interface unit (NIU) and at least one target NIU.
Initiator NIUs convert transaction requests at the initiator
socket interface to request packets and converts response
packets to transaction responses at the initiator socket inter-
face. Target NIUs convert request packets to transaction
requests at the target socket interface and converts transac-
tion responses at the target socket interface to response
packets. Initiator NIUs and target NIUs are connected
through a topology of switches. The packets may contain a
field known as a sequence ID, which encodes some or all of:
the initiator ID, target ID, transaction sequence 1D, and
transaction tag.

Conventional target NIUs, upon receiving transaction
responses, perform a context array look up that requires a
search of all context array entries and logic to deduce the
oldest entry in the chain matching the response packet
sequence ID. This requires a lot more logic silicon area than
a simple index. More importantly, the logic for the chained
list look-up is deeper in logic levels and therefore has longer,
slower, timing paths. Therefore what is needed is a system
and method for connecting two NoCs that has faster timing
and less logic.

SUMMARY

In accordance with the various aspects and teachings of
the present invention, a system and method are provided that
connect two NoCs with less logic and faster timing paths
using a transaction interface protocol. In accordance with the
various aspects of the present invention, a transaction inter-
face protocol is disclosed wherein the interface protocol has
a transaction ID signal in each of the request and response
channels. The protocol is used between a target NIU master
and an initiator NIU slave that are directly connected
through a transaction interface. The target NIU response
channel uses the transaction ID signal to identify the entry
in a context array associated with the corresponding request.
The coupling of target NIU and initiator NIU enable the
formation of an on-chip interconnect comprising multiple
NoCs wherein the topology of the interconnect is simpler,
smaller, faster, and has lower latency.

DESCRIPTION OF DRAWINGS

FIG. 1 illustrates a full chip interconnect

FIG. 2 illustrates a transaction interface protocol.

FIG. 3 illustrates an initiator NIU.

FIG. 4 illustrates a target NIU that stores echo fields.

FIG. 5 illustrates a transaction interface protocol, accord-
ing to the teachings of the present invention, with a trans-
action ID signal.

10

15

20

25

30

40

45

50

55

60

65

2

FIG. 6 illustrates an initiator NIU, according to the
teachings of the present invention, which stores a transaction
D.

FIG. 7 illustrates an initiator NIU, according to the
teachings of the present invention that has no context
allocation unit, splitting unit, context array, or reassociation
unit.

FIG. 8 shows a target NIU according to the teachings of
the present invention.

FIG. 9 shows a NoC in according to the teachings of the
present invention.

FIG. 10 shows a flowchart for the method of operation of
one embodiment of the target NIU.

DETAILED DESCRIPTION

FIG. 1 shows a full chip interconnect comprising a first
NoC 120 and a second NoC 140. The NoC 120 comprises an
initiator NIU 122 that is coupled to an initiator 110 through
a socket interface 112. The first NoC 120 is coupled to the
initiator 110. The NoC 120 also comprises a target NIU 124
that is coupled to a target 130 through a socket interface 132.
A target NIU 126 in the NoC 120 is coupled to an initiator
NIU 142 in the NoC 140 through a socket interface 160. The
NoC 140 comprises a first target NIU 144 coupled to a target
150 and a target NIU 146 coupled to a target 152.

A NoC uses layered communication. Sockets present a
transaction layer protocol such as the Advanced Microcon-
troller Bus Architecture (AMBA) Advanced eXtensible
Interface (AXI) and Open Core Protocol (OCP). One trans-
action layer protocol is illustrated in FIG. 2. It has a request
channel 200 with signals for opcode, address, write data,
burst length, and sequence id. The protocol also has a
response channel 210 with signals for data and sequence id.
A transport layer protocol encapsulates the transaction infor-
mation in one or more packets that are transferred through
the topology of switches. Packets carry data along with a
header that can have fields such as address bits, route id,
opcode, and sequence id. A physical layer implements flow
control and a simple connection of wires that transfer packet
headers and data. A physical layer protocol can have signals
such as ready, valid, and data.

NIUs can perform the functions of:

address decoding;

context allocation;

transaction splitting; and

context reassociation.

In accordance with one aspect of the present invention,
one embodiment of an initiator NIU 300 is shown in FIG. 3.
Within the initiator NIU 300, requests are accepted through
a socket interface request channel 302. Responses are pre-
sented by the initiator NIU 300 through a socket interface
response channel 304. Request packets are sent on a request
transport interface 306 and response packets are received on
a response transport interface 308. Transaction addresses are
decoded in a decode unit 310 to produce a route id field in
packet headers. Packets are associated with contexts in a
context allocation unit 312. If necessary, transactions are
split into multiple packets in a packet splitting unit 314. The
packets are sent on the request transport interface 306.

The initiator NIU 300 includes the splitting unit 314. For
transaction requests the splitting unit 314 causes the creation
of a number of packets to transport the transaction. The
initiator NIU 300 can split transactions into multiple packets
in order to ensure a desired byte alignment, burst alignment,
target address range boundaries, address interleaving, or



US 9,471,538 B2

3

protocol boundary requirements, such as the AXI require-
ment of bursts not to cross 4 KB aligned address boundaries.

A context array 320 comprises entries that are allocated to
pending transactions. If the context array 320 is full then the
initiator NIU 300 asserts backpressure on the socket inter-
face request channel 302. The physical layer ready signal is
deasserted. The context array 320 stores, among other infor-
mation, the sequence id and opcode of each pending trans-
action. The context array 320 has four entries and therefore
supports up to four pending transactions. When response
packets are received on the response transport interface 308
a context reassociation unit 330 reassociates the packet with
the context of the pending transaction. The reassociation by
the reassociation unit 330 ensures that the sequence ID of the
response on the response channel 304 of the initiator socket
interface matches the sequence ID of the corresponding
request.

In FIG. 4 a target NIU 400 is shown that can correspond
with the initiator NIU 300. Request packets are accepted on
a request transport interface 402 and response packets are
sent on a response transport interface 404. Transaction
requests are presented through a socket interface request
channel 406 and transaction responses are accepted by the
NIU through a socket interface response channel 408. The
target NIU 400 includes a context allocation unit 412, a
context array 420, and a context reassociation unit 430.

In this embodiment reassociation of packets to the context
of their pending transactions is simple. The packet header
includes an echo field that is produced by the allocation unit
312 in the initiator NIU 300 and echoed back from the target
NIU 400 unaltered. The echo field stores an index into the
context array 320. The context array is accessed as a table
lookup. The echo field E is stored in the target NIU context
array 420 while each transaction from the target NIU 400 is
pending. The echo field, which is part of the transport layer
protocol, is included in the header of response packets for
the transaction.

The target NIU 400 reassociation unit 430 does not have
the luxury of an index the echo field. State of the art industry
standard transaction level protocols, such as the target NIU
400 uses at the target socket interface, do not include echo
information. Responses on the socket interface response
channel 408 must be reassociated with the header informa-
tion stored from the request packet, stored in the context
array 420 in order to form the response packet.

The target NIU reassociation unit 430 must perform a
lookup of the appropriate context array entry based on the
oldest transaction with the sequence ID of the response
packet. The context array 420 is organized as a chained list
of pending transactions with a chain for each sequence ID.

An aspect of the invention is shown in FIG. 5. A conven-
tion transaction interface, including signals for opcode,
address, write data, burst length, and sequence id, is
enhanced in the request channel 500 with the additional
signals Request TrID and in the response channel 510 with
Response TrID. The TrID signals convey a transaction ID.
This enhanced signal interface is used by an enhanced NoC
socket protocol. In one embodiment of the invention the
master of the socket interface asserts a value on TrID when
a transaction request is presented and the slave of the
interface gives exactly the same value on the Response TrID
signal when presenting the transaction response. In accor-
dance with another aspect of the present invention, the slave
of the interface gives a value on the Response TrID signal
that is transformed from the corresponding value Request

10

15

20

25

30

35

40

45

50

55

60

65

4

TrID value. A transformation can be the changing of the
order or sense of bits. The key is associability to a unique
master context array entry.

In one embodiment, each of multiple pending transactions
has a unique TrID value. In another embodiment, TrID
values are reused for transactions that must be executed in
order, despite downstream buffering. In another embodi-
ment, TrID values are given for successive transactions in a
non-sequential order.

In one embodiment of the invention, the asserted TrID
value is mapped from a field in a packet header within the
upstream NoC. In one embodiment the TrID value is
mapped to a field in a packet header within the downstream
NoC.

An optimal protocol configuration varies from one NoC to
another and from one chip to another. In one embodiment of
the invention, the NoC socket protocol is configurable at
chip design time. Configuration options include, among
others, the width of the Request and Response TrID signals.
The register transfer level (RTL) language logic is generated
by a configuration tool. The tool is used by chip designers to
generate customized configurations and produce RTL lan-
guage code for chip synthesis.

An aspect of the invention is shown in FIG. 6. Within an
initiator NIU 600 requests are accepted through a socket
interface request channel 602. Responses are presented by
the NIU 600 through a socket interface response channel
604. Request packets are sent on a request transport interface
606 and response packets are received on a response trans-
port interface 608. Transaction addresses are decoded in a
decode unit (D) 610 to produce a route id field in packet
headers. Packets are associated with contexts in a context
allocation unit A 612. If necessary, transactions are split into
multiple packets in a packet splitting unit S 614. The packets
are sent on the request transport interface 606.

A context array 620 comprises entries that are allocated to
pending transactions. If the array is full, then the initiator
NIU 600 asserts backpressure on the socket interface request
channel 602. In that state the physical layer ready signal is
deasserted. The context array 620 stores, among other infor-
mation, the sequence id of each pending transaction. The
context array 620 has four entries and therefore supports up
to four pending transactions. When response packets are
received on the response transport interface 608, a context
reassociation unit (R) 630 reassociates the packet with the
context of the pending transaction.

This aspect of the invention diverges from that of con-
ventional NIUs in that the context array 620 carries TrID
information. In one embodiment, the context array stores a
TrID field (T) with each array entry. The value stored in the
field is that of a signal on the socket interface request
channel 602 at the time that a transaction request is granted.
When an associated response is presented on the socket
interface response channel, a signal on the interface is driven
from the TrID field in the context array entry associated with
the transaction for which the response is presented.

In one embodiment the TrID field of the context array is
included in the header of packets generated to transport the
associated transaction. It forms the Echo field in the packet
header.

In another embodiment, the master and slave side of the
socket interface have the same number of contexts and the
TrID values are unique per context. The TrID from the
master forms a direct index into the context array in the
initiator NIU. The request packet header produced by and
the response packet header received by the initiator NIU
have an Echo field that is a direct index into the context



US 9,471,538 B2

5

array. In this way, no storage is required for TrID value in the
context array and no remapping is required between TrID
signals and packet header Echo fields.

Referring now to FIG. 7, an initiator NIU 700 is con-
nected to an upstream target NIU through a NoC to NoC
socket having a request channel 702, which is connected to
a decode unit (D) 710, and a response channel 704. The
upstream target NIU (not shown) supports the same number
of contexts as the initiator NIU 700. In this case, a context
array is not needed within the initiator NIU. Contexts are
managed only in the target NIU. The TrID value of the NoC
socket protocol is used directly as the Echo field in packets
sent on a NoC transport request channel 706 and received on
a NoC transport response channel 708. The echo field of
response packets directly drives the response TrID signal on
the socket response channel 704. This arrangement depends
on a configuration of the NIU that requires no response word
reassembly or other response attributes that are specific to
their corresponding requests.

An optimal configuration of an initiator NIU varies from
one NoC to another and from one chip to another. In one
embodiment of the invention, the initiator NIU is configu-
rable at chip design time. Configuration options include,
among others, the width of the request and response TrID
signals, the width of the TrID field in the context array of the
NIU, the number of context array entries the number of
pending transactions, and the mapping of TrID signals to a
packet header Echo field. The number of pending transac-
tions should be matched between an initiator NIU and its
connected IP. If an initiator NIU supports more pending
transactions than the IP then it will never use all of its
context array entries. If the initiator NIU supports fewer
pending transactions than the IP then it will assert back
pressure on the IP even if there is network availability in the
NoC. If the number of pending transactions is not a power
of two then the upstream target NIU and downstream
initiator NIU must agree on the encoding of valid TrIDs. If
TrIDs are unique to transactions and the number of unique
TrID encodings is less than the maximum number of pend-
ing transactions then the downstream initiator NIU must
correctly reassociate responses to the TrID of their corre-
sponding requests.

The initiator NIU logic, described in a RTL language, is
generated by a configuration tool. The tool is used by chip
designers to generate customized configurations and pro-
duce RTL language code for chip synthesis.

A chip design strategy that is beneficial for synthesis and
layout is to create one or more client NoCs and one memory
NoC that supports interleaved access to one or more memo-
ries such as double data rate DDR dynamic random access
memory DRAM. In such a design, the memory NoC has one
or more NoC to NoC initiator NIUs to receive and service
requests from the client NoCs. An embodiment of initiator
NIU for such a configuration comprises a reorder buffer. A
reorder buffer is like an extended context array with an
ability to store partial transaction responses. In such an
embodiment, TrID may be stored in the context array within
the reorder buffer.

In an on-chip interconnect comprising an upstream NoC
and a downstream NoC that share an interface, one embodi-
ment of an initiator NIU in the downstream NoC that is
coupled to a target NIU in the upstream NoC consists of no
splitting unit. Splitting is performed at one or more initiator
NIUs in the upstream NoC with knowledge of the splitting
requirements of the initiator NIU in the downstream NoC. In
this way the embodiment of the initiator NIU in the down-
stream NoC is smaller, faster, and has less transaction

10

15

20

25

30

35

40

45

50

55

60

65

6

latency. Some parameters of the downstream NoC consid-
ered by the initiator NIU of the upstream NoC are the
address map seen by the target NIU of the downstream NoC,
the maximum burst length of targets in the downstream
NoC, the data width of target socket interfaces in the
downstream NoC, and downstream NoC target socket pro-
tocol restrictions on bursts crossing boundaries such as the
AXI protocol restriction that bursts not cross a 4k byte
aligned address. Eliminating the splitting logic of the ini-
tiator NIU of the downstream NoC minimizes logic area,
timing path length, and transaction latency.

An aspect of the invention relates to the embodiment of
the target NIU that transacts with the initiator NIU at the
NoC socket interface. In one embodiment, a target NIU that
uses the NoC socket protocol maps the TrID signal as a
function of an Echo field in a packet header. In the simplest
case the mapping function is a direct copy.

The method of operation of one embodiment of the target
NIU is shown in FIG. 10. The target NIU comprises a
context array. Array entries store information about the
transaction, which can include information from the request
packet that caused the generation of the transaction. For each
transaction request an entry in the array is allocated. The
value of the Response TrID signal at the socket interface
forms an array index. It points to the array entry that holds
the information related to the corresponding transaction. The
number of entries in the context array defines a maximum
number of simultaneously pending transactions that can be
supported by the target NIU. The number of bits of the TrID
signal, which forms an unsigned binary index into the array,
is the base two logarithm of the number of pending trans-
actions, rounded up to an integer. Every pending transaction
has a unique TrID value.

An optimal configuration of a target NIU varies from one
NoC to another and from one chip to another. In one
embodiment of the invention, the target NIU is configurable
at chip design time. Configuration options include, among
others, the width of the request and response TrID signals,
the number of context array entries, the number of pending
transactions, and the mapping of TrID signals to a packet
header Echo field. The number of pending transactions
should be matched between a target NIU and its connected
IP. If a target NIU supports more pending transactions than
the IP then it will have more context array entries than
necessary. If the target NIU supports fewer pending trans-
actions than the IP then it will never use all of its context
array entries. For a socket interface between two NoCs, it is
advisable to ensure that the number of pending transactions,
and therefore the number of context array entries, is the
same for the upstream target NIU and the downstream
initiator NIU.

The target NIU logic, described in a RTL language, is
generated by a configuration tool. The tool is used by chip
designers to generate customized configurations and pro-
duce RTL language code for chip synthesis.

The combination of an initiator NIU and target NIU that
use the enhanced NoC socket protocol enables the imple-
mentation of a superior multi-NoC composition of an
upstream NoC and downstream NoC within an on-chip
interconnect. In a single conventional NoC a packet header
includes an Echo field that is used by an initiator to effi-
ciently map responses to context array entries. The NoC
composition uses the enhanced NoC socket protocol above
for the socket interface between a target NIU of an upstream
NoC and a connected initiator NIU of a downstream NoC.
In one embodiment of the invention the value of the TrID
signal of the transaction interface carries the Echo field of



US 9,471,538 B2

7

request packet of the upstream NoC to the initiator NIU of
the downstream NoC. The initiator NIU of the downstream
NoC in turn uses the value of the TrID signal as the Echo
field within one or more packets that it creates to carry out
the protocol interface transaction.

In accordance with one aspect of the present invention, an
embodiment of a NoC composition is shown in FIG. 9 and
includes an upstream NoC 910 coupled to downstream NoC
950, both together transmitting a transaction request from
left to right and a response from right to left. Initiator NIU
920 receives a transaction request from an initiator IP (not
shown), allocates a context entry in context array 922, and
sends a request packet to target NIU 930. Target NIU 930
receives the request packet and allocates a context entry in
context array 932 that includes the Echo value from the
request packet header. Target NIU 930 issues transaction
request 982, including a TrID signal, to initiator NIU 960.
Initiator NIU 960 allocates a context entry in context array
962, in which it stores the TrID according to the invention.
Initiator NIU 960 sends request packet 984 to target NIU
970. Target NIU 970 receives the request packet and allo-
cates a context entry in context array 972 that includes the
Echo value from the request packet header. Target NIU 970
issues a transaction request to a target IP (not shown). The
target IP issues a transaction response to target NIU 970,
wherein reassociation logic 974 retrieves the context entry
corresponding to the transaction from context array 972.
Target NIU 970 sends response packet 986 to initiator NIU
960, wherein table lookup module 964 uses the Echo packet
header field to simply retrieve the context entry correspond-
ing to the transaction from context array 962. According to
the various aspects of the present invention, initiator NIU
960 sends transaction response 988 to target NIU 930,
wherein table lookup module 934 uses the TrID signal to
simply retrieve the context entry corresponding to the trans-
action from context array 932. Target NIU 930 sends
response packet 990 to initiator NIU 920, wherein table
lookup module 924 uses the Echo packet header field to
simply retrieve the context entry corresponding to the trans-
action from context array 922. Initiator NIU 920 sends the
transaction response to the initiator IP.

In one embodiment the value of the TrID signal is stored
in the context array of the initiator NIU of the downstream
NoC. The stored TrID value is presented at the transaction
interface with the response. In another embodiment TrID is
not stored but implicit in the echo field.

In one embodiment the initiator NIU of the upstream
NoC, configured with awareness of the address map and
transaction protocol support of targets in the downstream
NoC, performs all required splitting of initiator IP requests
into multiple packets. The initiator NIU of the downstream
NoC therefore requires no packet splitting logic. This has the
further benefit of a simple mapping of the Echo field of the
upstream NoC packet header to the Echo field of the
downstream NoC packet header. As a result, context man-
agement within the target NIU of the upstream NoC is
simplified to a table access. That is a much faster structure
than the chained list lookup of a conventional NoC compo-
sition. In such a configuration the complexity of address
decoding, splitting, and context association is present in the
upstream initiator NIU, near the initiator IP, and generally
distributed away from congested parts of the chip. The
upstream initiator NIU must therefore know certain proper-
ties of the targets of the downstream NoC such as address
cross boundary restrictions and maximum bust lengths,
among others.

10

15

20

25

30

35

40

45

50

55

60

65

8

In another embodiment the initiator NIU of the upstream
NoC is unaware of the address map implemented in the
initiator NIU of the downstream NoC. The downstream NoC
has a non-trivial address decode module and splitting and
association logic as necessary. In typical implementations a
cross boundary parameter for the socket interface is agreed
between the upstream and downstream NoC such that the
upstream initiation NIU will split transactions in a way that
the downstream initiation NIU need not. In such a configu-
ration the complexity of address decoding, splitting, and
context association is present in the downstream NoC. In
many chips, downstream NoCs are closer to performance
critical memories and necessarily more central to the chip.
Though such a configuration creates congestion, it allows
flexibility for the design of the memory subsystem, isolating
its particular details from the upstream client NoCs.

An aspect of the disclosed invention relates to the method
of managing contexts within the target NIU of a socket
interface between a target NIU of an upstream NoC and an
initiator NIU of a downstream NoC. One embodiment
comprises allocating a free context for each new incoming
Request using a pooling or a stack-based algorithm. The
context is identified by an Echo and/or a sequence 1D field
within the packet header. Each context array entry contains
the necessary information for building the response header:

route 1D;

opcode; and

echo.

The target NIU issues a request for a transaction, associ-
ated with the allocated context array entry. The request
includes a Request TrID signal. The target NIU assigns the
signal according to the index of the context array entry that
is allocated. Eventually the target NIU receives a response.
The response includes a Response TrID signal. The target
NIU then uses the value of the Response TrID signal as an
index value to look up the associated entry of the context
array. The context is freed when either the header of a write
response transport packet is sent or the last data of a read
response transport packet is sent.

In another embodiment the Response TrID is a trans-
formed copy of the Request TrID signal for the same
transaction. One such transformation is the reordering of
bits. This enables the use of bank based storage in the
context array. Another transformation is the addition of
information indicating which of a number of data words in
a burst, separated by response interleaving, the partial
response word is delivering.

An aspect of the invention is the elimination of the needs
to perform reassociation of transactions to context array
entries in the target NIU of the socket interface between
NoCs. This benefit is furthermore useful for types of target
IPs other than NoCs such as memory controller. Memory
controller, like downstream NoC initiator NIUs, can also be
designed to respond with simply mapped TrID signals that
do not require complex reassociation logic. In general, target
NIUs reassociate transaction responses to context array
entries based on chained list of a sequence ID. This requires
a costlychained list lookup. With a NoC to NoC socket,
using a TrID signal on a transaction interface allows a simple
table index lookup to reassociate responses with context
array entries. For a transaction requested by an initiator IP,
passing through any number of NoC to NoC sockets, only
one reassociation chained list lookup is required. That is at
the target NIU connected to the target IP. All intermediate
target NIUs and initiator NIUs of NoC to NoC sockets can
use simple indexing of echo bits from packet header fields
and TrID bits of NoC socket protocol interfaces.



US 9,471,538 B2

9

An embodiment of a target NIU is shown in FIG. 8. Target
NIU 800 is shown that can correspond with an initiator NIU
such as initiator NIU 600 or 700. Request packets are
accepted on a request transport interface 802 and response
packets are sent on a response transport interface 804.
Transaction requests are presented through a socket inter-
face request channel 806 and transaction responses are
accepted by the NIU through a socket interface response
channel 808. Target NIU 800 comprises a context allocation
unit 812, a context array 820, and a context reassociation
unit 830. A unique address for the table entry chosen by the
context allocation unit 812 is sent as request TrID signal
840. Response TrID signal 842 is used as the selector in a
mux 850 to select the echo field E of the entry chosen by the
context allocation unit 812. This is a lookup mechanism that
eliminates the need for the traditional complex reassociation
logic as well as simplify the overall system and enhance
system performance.

Chips are increasingly complex. They can no longer be
designed by a single engineer or even a single team of
engineers. Chips are necessarily designed modularly. It is
therefore necessary to design modules using separate NoCs.
Top level integration of within the full chip requires inter-
faces between NoCs. Using a NoC socket protocol allows
NoC interfaces to run faster and/or run with fewer pipe
stages to close timing. Furthermore, using a NoC socket
protocol allows teams to design independently without the
need for a time consuming process of negotiating between
teams on the best interface. In one embodiment a tool is used
to configure and generate the NoC RTL. It automatically
generates an optimized protocol specifically for each socket
interface between NoCs. Among other parameters, the con-
figuration determines the size of the TrID signal and the
number of pending transactions supported.

The tool also accepts the address map of targets within the
address space of initiators for each NoC. Using the address
map of a downstream NoC the tool determines the type of
splitting required to produce the one or more packets in the
downstream NoC needed to complete a transaction. The tool
configures the initiator NIU RTL to implement such packet
splitting. The effect of this is to create a unified address map
in the address decoding of initiator NIUs. This is done
without requiring separate design teams to know the address
map of each other’s NoC.

The tool also generates a verification testbench and tests
to exercise all transaction types on all routes between
initiators and targets with interconnectivity. With awareness
of the NoC composition, the tool generates a unified test-
bench and tests to exercise accesses from each initiator to all
accessible targets even through NoC to NoC sockets and
with the resulting hierarchies of address mappings.

The tool also generates a performance exploration simu-
lation environment. With awareness of the of NoC compo-
sition, it generates a simulation environment that models the
passage of transactions and their associated packets between
NoCs.

All of these benefits are achieved without a need for
communication between teams. A risk of designs by separate
teams without communication is for circular dependencies
between modules. Because the tool has awareness of the
NoC composition and the configuration of each component
NoC it automatically performs circular dependency checks
such as circular initiator to target connectivity through NoC
to NoC sockets. Such dependencies can cause deadlock, but
are often difficult to detect even in thorough verification

20

25

35

40

45

10

environments. The tool automates the checking based on its
high level knowledge of NoC connectivity and configura-
tion.

A further benefit of easy integration of multiple NoCs is
that the transport packet header format in a NoC is optimized
based on its configuration. For example a NoC with many
initiators and targets requires a larger routelD field or a NoC
with many sideband signals will require a larger user bit
field. A large header increases the size of datapaths and
complexity of logic throughout the NoC. By using multiple
NoCs, with a transaction interface in between, the header
formats of the separate NoCs can be optimized separately
and generally made smaller.

It is to be understood that this invention is not limited to
particular embodiments or aspects described, as such may
vary. It is also to be understood that the terminology used
herein is for the purpose of describing particular embodi-
ments only, and is not intended to be limiting, since the
scope of the present invention will be limited only by the
appended claims.

Unless defined otherwise, all technical and scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
invention belongs. Any methods and materials similar or
equivalent to those described herein can also be used in the
practice or testing of the present invention.

All publications and patents cited in this specification are
herein incorporated by reference as if each were specifically
and individually indicated to be incorporated by reference
and are incorporated herein by reference to disclose and
describe the methods and/or materials in connection with
which the publications are cited. The citation of any publi-
cation is for its disclosure prior to the filing date and should
not be construed as an admission that the present invention
is not entitled to antedate such publication by virtue of prior
invention. Further, the dates of publication provided may be
different from the actual publication dates which may need
to be independently confirmed.

It is noted that, as used herein and in the appended claims,
the singular forms “a”, “an”, and “the” include plural
referents unless the context clearly dictates otherwise. It is
further noted that the claims may be drafted to exclude any
optional element. As such, this statement is intended to serve
as antecedent basis for use of such exclusive terminology as
“solely,” “only” and the like in connection with the recita-
tion of claim elements, or use of a “negative” limitation.

As will be apparent to those of skill in the art upon reading
this disclosure, each of the individual embodiments
described and illustrated herein has discrete components and
features which may be readily separated from or combined
with the features of any of the other several embodiments
without departing from the scope or spirit of the present
invention. Any recited method can be carried out in the order
of events recited or in any other order which is logically
possible.

Although the foregoing invention has been described in
some detail by way of illustration and example for purposes
of clarity of understanding, it is readily apparent to those of
ordinary skill in the art in light of the teachings of this
invention that certain changes and modifications may be
made thereto without departing from the spirit or scope of
the appended claims.

Accordingly, the preceding merely illustrates the various
aspects and principles of the invention. It will be appreciated
that those skilled in the art will be able to devise various
arrangements which, although not explicitly described or
shown herein, embody the principles of the invention and



US 9,471,538 B2

11

are included within its spirit and scope. Furthermore, all
examples and conditional language recited herein are prin-
cipally intended to aid the reader in understanding the
principles of the invention and the concepts contributed by
the inventors to furthering the art, and are to be construed as
being without limitation to such specifically recited
examples and conditions. Moreover, all statements herein
reciting principles, aspects, and embodiments of the inven-
tion as well as specific examples thereof, are intended to
encompass both structural and functional equivalents
thereof. Additionally, it is intended that such equivalents
include both currently known equivalents and equivalents
developed in the future, i.e., any elements developed that
perform the same function, regardless of structure. The
scope of the present invention, therefore, is not intended to
be limited to the exemplary embodiments shown and
described herein. Rather, the scope and spirit of present
invention is embodied by the appended claims.

The invention claimed is:

1. An initiator network interface unit comprising:

a first channel that accepts a transaction identifier signal
and a sequence identifier signal with a request, the
transaction identifier signal is configured to indicate a
unique transaction identifier and the sequence identifier
signal is configured to indicate a unique sequence
identifier different from the unique transaction identi-
fier;

a second channel that provides the transaction identifier
signal with a response; and

a context array having a capacity to store a plurality of
entries corresponding to a plurality of pending trans-
actions, wherein a backpressure is asserted on the first
channel and a physical layer ready signal is deasserted
upon detecting that the capacity of the context array is
full.

2. The initiator network interface unit of claim 1 that maps
the transaction identifier signal accepted with the request to
a field of a request packet header.

3. The initiator network interface unit of claim 1 that maps
a field of a response packet header to the transaction
identifier signal provided with the response.

4. The initiator network interface unit of claim 3 wherein
the mapping function is a direct copy.

5. The initiator network interface unit of claim 1 wherein
a value of the transaction identifier signal is mapped to a
packet header field.

6. The initiator network interface unit of claim 1 wherein
a value of the transaction identifier signal has at least as
many bits as log2 of a maximum number of pending
transactions.

7. The initiator network interface unit of claim 1 wherein
a number of pending transaction have unique values of the
transaction identifier signal.

8. The initiator network interface unit of claim 1 wherein
the network interface unit is configurable.

9. The initiator network interface unit of claim 1 wherein
the network interface unit is generated by a tool.

10. The initiator network interface unit of claim 1 com-
prising a reorder buffer operably connected to the second
channel.

11. The initiator network interface unit of claim 1 con-
sisting of no splitting unit.

12. A system comprising:

a first network on chip including an initiator network
interface unit, wherein the initiator network interface
unit comprises:

a packet splitting unit;
a socket interface request channel that accepts a trans-
action request that includes a transaction identifier

15

25

30

35

40

45

[
<

65

12

signal and a sequence identifier signal, the transac-
tion identifier signal is configured to indicate a
unique transaction identifier and the sequence iden-
tifier signal is configured to indicate a unique
sequence identifier different from the unique trans-
action identifier; and

a context array having a capacity to store a plurality of
entries corresponding to a plurality of pending trans-
actions, wherein a backpressure is asserted on the
socket interface request channel and a physical layer
ready signal is deasserted upon detecting that the
capacity of the context array is full; and

a second network on chip, operably connected to the first
network on chip,

wherein splitting performed by the packet splitting unit is
based, at least in part, on one or more parameters of the
second network on chip.

13. The system of claim 12 wherein at least one parameter

of the one or more parameters is an address map.

14. The system of claim 12 wherein at least one parameter

of the one or more parameters is a maximum burst length.

15. An on-chip interconnect comprising:

an upstream network on chip;

a first initiator network interface unit within the upstream
network on chip, the first initiator network interface
unit comprising:

a socket interface request channel that accepts a trans-
action request that includes a transaction identifier
signal and a sequence identifier signal, the transac-
tion identifier signal is configured to indicate a
unique transaction identifier and the sequence iden-
tifier signal is configured to indicate a unique
sequence identifier different from the unique trans-
action identifier; and

a context array having a capacity to store a plurality of
entries corresponding to a plurality of pending trans-
actions, wherein a backpressure is asserted on the
socket interface request channel and a physical layer
ready signal is deasserted upon detecting that the
capacity of the context array is full;

a first target network interface unit within the upstream
network on chip;

a first address mapping of the first target network interface
unit within an address space of the first initiator net-
work interface unit;

a downstream network on chip;

a second initiator network interface unit within the down-
stream network on chip operably coupled to the first
target network interface unit;

a second target network interface unit within the down-
stream network on chip;

a second address mapping of the second target network
interface unit within an address space of the second
initiator network interface unit; and

a packet splitting unit within the first initiator network
interface unit that splits packets according to the second
address mapping.

16. A method of managing contexts within a target

network interface unit of a network-on-chip comprising:
allocating a context array entry to a context array that has

a capacity to store a plurality of entries corresponding

to a plurality of pending transactions;

detecting whether the capacity of the context array is full;

issuing a transaction request

including a request transaction context array entry iden-
tifier with the transaction request on a socket interface
request channel;



US 9,471,538 B2

13

asserting a backpressure on the socket interface request
channel and deasserting a physical layer ready signal
upon detecting that the capacity of the context array is

accepting a transaction response with a transaction
response identifier that is configured to indicate a
unique value; and

using the transaction response identifier to look up the

context array entry.

17. The method of claim 16 wherein the request transac-
tion context array entry identifier is transformed in the
transaction response identifier.

18. A method of transporting transactions through a
composition of network-on-chips comprising:

reassociating a transaction response to a first entry of a

first context array in a first target network interface unit
in a first network on chip, the first context array
configured to store a unique transaction identifier and a
unique sequence identifier different from the unique
transaction identifier;

mapping an echo field of a packet header from the first

entry;

mapping a transaction identifier signal from the echo field

of the packet header, the transaction identifier signal is
configured to indicate the unique transaction identifier;

5

10

15

20

14

in a second context array in a second target network
interface unit of a second network on chip that has a
capacity to store a plurality of entries corresponding to
a plurality of pending transactions, detecting whether
the capacity of the second context array is full, the
second context array configured to store the unique
transaction identifier and the unique sequence identi-
fier;

asserting a backpressure on a socket interface request
channel and deasserting a physical layer ready signal
upon detecting that the capacity of the second context
array is full; and

using a value of the transaction identifier signal to index
into a second entry of the second context array upon
detecting that the capacity of the second context array
is not full.

19. The method of claim 18 further comprising:

mapping a second echo field of a second packet header
from the second entry; and

indexing into a third context array using the second echo
field.



